Unintended consequences - FODMAP rich diets and digestive distress
Consumers are increasingly in pursuit of healthier diets, including plant-based diets, Mediterranean-style diets, and ones high in fiber. Along with these diet changes, though, can come digestive distress from specific dietary elements called FODMAPs (fermentable oligo-, di-, monosaccharides, and polyols). FODMAPs can include lactose, found in dairy products; galactans, found in legumes; and fructans, found in certain fruits and vegetables. It is increasingly being recognized that the human gut may have difficulty processing fermentable carbohydrates from specific FODMAPS. More specifically, gases are generated when these carbohydrates ferment in the gut – which can result in abdominal bloating, cramping, and flatulence.
Despite decades of clinical substantiation for prebiotic effects in healthy adults1, fructans, such as inulins, are the recent topic of several high-impact publications demonstrating their potential inflammatory role in the mammalian gut². There may be an opportunity to address fructan-related digestive symptoms and gut inflammation with inulinase enzyme supplementation.
Essentially, inulinase breaks down fructans, or long chains of fructose sugars linked together by a bond that human gut enzymes cannot naturally hydrolyze. Rather, the human gut uses its innate microbes, which can release inulinases to metabolize fructans. The R&D team at BIO-CAT, an industry leader in digestive health specializing in enzyme and probiotics, hypothesized that microbial inulinase supplementation can promote dietary fructan digestion in the stomach into fructose that can be absorbed by the upper intestine rather than fermenting in the lower intestine, leading to digestive symptoms.
The BIO-CAT R&D team has recently published a new preclinical study focused on inulinase-mediated FODMAP digestion in the prestigious scientific journal Frontiers in Nutrition. Altogether, these data support the potential for inulinase enzyme supplementation across physiologically relevant gastric conditions, thus setting the stage for a clinical efficacy trial. BIO-CAT has initiated a clinical trial designed to determine the safety and tolerability of high-dose microbial inulinase supplementation. The upcoming clinical trial has received approval via Health Canada and will be managed by Nutrasource.
Sean Garvey, Ph.D., Director of Enzyme Research and Development at BIO-CAT stated: “Currently, there are consumer products available on the market promoting the digestion of lactose and galactans. However, there remains an opportunity for improving digestion of fructans found in vegetables like onions and garlic”. Dr. Garvey’s team conducted the in-house study of inulinase utilizing their validated gastric digestion simulation, adapted from the INFOGEST model.
BIO-CAT is committed to providing the highest quality enzymes to support the health and well-being of its customers. The publication of this preclinical study is a testament to BIO-CAT’s commitment to research and innovation.